Autophagy-mediated chemosensitizing effect of the plant alkaloid voacamine on multidrug resistant cells

In our previous studies, voacamine, a bisindolic alkaloid extracted from Peschiera fuchsiaefolia, was examined for its possible capability of enhancing the cytotoxic effect of doxorubicin (DOX) on multidrug resistant (MDR) human osteosarcoma cells (U-2 OS-R). Voacamine induced in resistant cells a s...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology in vitro Vol. 21; no. 2; pp. 197 - 203
Main Authors: Meschini, S., Condello, M., Marra, M., Formisano, G., Federici, E., Arancia, G.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-03-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In our previous studies, voacamine, a bisindolic alkaloid extracted from Peschiera fuchsiaefolia, was examined for its possible capability of enhancing the cytotoxic effect of doxorubicin (DOX) on multidrug resistant (MDR) human osteosarcoma cells (U-2 OS-R). Voacamine induced in resistant cells a significant increase of drug retention and intranuclear location which became comparable to those observed in the parental sensitive counterparts (U-2 OS-WT). In the present study, the cell survival analysis and the electron microscopic observations confirmed the evident cytotoxicity of DOX on MDR cells after pre-treatment with the plant extract. Moreover, an increase of the reactivity of P-glycoprotein (P-gp) with the monoclonal antibody UIC2, which recognizes an epitope of the drug transporter in its functional conformation, was revealed, demonstrating that voacamine is a substrate of P-gp, thus acting as a competitive antagonist of the cytotoxic agent. Moreover, to investigate if the enhancement of the cytotoxic effect induced by voacamine could be due to an apoptotic process, we carried out the analysis of cell morphology after Hoechst staining and the quantification of apoptosis by Annexin V-FITC assay. These evaluations showed a very low rate of apoptosis in U-2 OS-R cells treated with voacamine and DOX given in association. In addition, the combined treatment induced ultrastructural modifications suggestive of autophagic cell death. In particular, transmission electron microscopy observations revealed the presence of numerous lysosomes and the formation of a large number of autophagosomes containing residual digested material. In conclusion, these findings seem to indicate that voacamine is capable of enhancing the cytotoxic effect of DOX on MDR cells by favouring a lethal autophagic process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-2333
1879-3177
DOI:10.1016/j.tiv.2006.09.007