Simulation, fabrication and characterization of a 3D piezoresistive force sensor

In this contribution we report on a miniaturized bulk micro-machined three-axes piezoresistive force sensor. The force sensor consists of a full membrane with 16 conventional two terminal p-type diffused piezoresistors on the surface of the membrane. The die size of the chip is 6.5 mm × 6.5 mm. Piez...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. Vol. 147; no. 2; pp. 430 - 435
Main Authors: Tibrewala, A., Phataralaoha, A., Büttgenbach, S.
Format: Journal Article
Language:English
Published: Elsevier B.V 03-10-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this contribution we report on a miniaturized bulk micro-machined three-axes piezoresistive force sensor. The force sensor consists of a full membrane with 16 conventional two terminal p-type diffused piezoresistors on the surface of the membrane. The die size of the chip is 6.5 mm × 6.5 mm. Piezoresistors with four different designs were placed on the membrane. Sensitivities were found to be in the range of 0.37–0.79 mV/(V mN) and 1.68–2.92 mV/(V mN) in Z-direction and X- or Y-direction, respectively. The stiffness of the measured microprobes in the range of 5–8 mN/μm and 0.27–0.48 mN/μm were obtained in vertical and lateral direction, respectively. Various single and twin membranes designs were simulated to calculate stiffness of the microprobe. The measurement results show a cross-axis sensitivity of <2.5% at full scale of 25 mN.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0924-4247
1873-3069
DOI:10.1016/j.sna.2008.05.020