Low MHC DRB class II diversity in the mountain goat: past bottlenecks and possible role of pathogens and parasites
Major histocompatibility complex (MHC) genes are the most polymorphic in vertebrates and code for molecules playing a central role in pathogen resistance. We studied levels of MHC DRB class II diversity in a long-term study population of mountain goats (Oreamnos americanus) at Caw Ridge, Alberta, an...
Saved in:
Published in: | Conservation genetics Vol. 8; no. 4; pp. 885 - 891 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Dordrecht : Kluwer Academic Publishers
01-08-2007
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Major histocompatibility complex (MHC) genes are the most polymorphic in vertebrates and code for molecules playing a central role in pathogen resistance. We studied levels of MHC DRB class II diversity in a long-term study population of mountain goats (Oreamnos americanus) at Caw Ridge, Alberta, and two other populations from British Columbia, Canada. Only two alleles were found among the three populations sampled. The Caw Ridge population was fixed for one of the two MHC DRB alleles, but this lack of variation did not appear to have affected it negatively because the population doubled over two decades and had no history of any apparent infectious diseases. Past population bottlenecks during Pleistocene glaciations are thought to have been the main factor contributing to the low levels of MHC diversity in mountain goats, a hypothesis supported by our previous work reporting low polymorphism at neutral loci. Additionally, the limited MHC variability in mountain goats may be related to its northern distribution as we found that allelic diversity at MHC DRB class II in wild ungulates decreases with increasing latitude, possibly as a result of low parasite diversity at high latitudes. The low MHC variation in mountain goats and other northern ungulates such as muskoxen (Ovibos moschatus) may expose these species to population outbreaks that could be generated by introduced pathogens or northward shifts in the distribution of pathogens with global climate warming. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s10592-006-9243-5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1566-0621 1572-9737 |
DOI: | 10.1007/s10592-006-9243-5 |