Termination-altering amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation
To identify regions of the largest subunit of RNA polymerase that are potentially involved in transcript elongation and termination, we have characterized amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase that alter expression of reporter genes preceded by termina...
Saved in:
Published in: | Genes & development Vol. 8; no. 23; pp. 2913 - 2927 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-12-1994
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To identify regions of the largest subunit of RNA polymerase that are potentially involved in transcript elongation and termination, we have characterized amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase that alter expression of reporter genes preceded by terminators in vivo. Termination-altering substitutions occurred in discrete segments of beta', designated 2, 3a, 3b, 4a, 4b, 4c, and 5, many of which are highly conserved in eukaryotic homologs of beta'. Region 2 substitutions (residues 311-386) are tightly clustered around a short sequence that is similar to a portion of the DNA-binding cleft in E. coli DNA polymerase I. Region 3b (residues 718-798) corresponds to the segment of the largest subunit of RNA polymerase II in which amanitin-resistance substitutions occur. Region 4a substitutions (residues 933-936) occur in a segment thought to contact the transcript 3' end. Region 5 substitutions (residues 1308-1356) are tightly clustered in conserved region H near the carboxyl terminus of beta'. A representative set of mutant RNA polymerases were purified and revealed unexpected variation in percent termination at six different rho-independent terminators. Based on the location and properties of these substitutions, we suggest a hypothesis for the relationship of subunits in the transcription complex. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.8.23.2913 |