Neonatal olfactory bulbectomy causes dendritic spine retraction in dorsal hippocampal CA3 neurons in female rats and spatial learning deficits in male rats
Olfactory bulbectomy (OBX) is an experimental strategy that is widely employed because it produces changes at different levels (from behavioral to molecular) that can be related to symptoms of depression in humans. This procedure has been widely studied in adult rats, but little information has been...
Saved in:
Published in: | Brain Structure and Function Vol. 229; no. 1; pp. 143 - 149 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-01-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Olfactory bulbectomy (OBX) is an experimental strategy that is widely employed because it produces changes at different levels (from behavioral to molecular) that can be related to symptoms of depression in humans. This procedure has been widely studied in adult rats, but little information has been obtained of its effect in neonatal rats. The objective of the present study was to evaluate learning and memory capacity and dendritic spine density in dorsal hippocampal CA3 neurons. Seven-day-old male and female Wistar rats were subjected to nOBX by suction, we included an intact group as a control (CON) and a sham-operated group (SHAM), too. Spatial learning and memory were measured at 56 days of age using a Morris water maze. A different cohort of experimental groups was used to measure dendritic spine density by Golgi-Cox impregnation. Male rats with nOBX showed a pronounced spatial learning deficit than female rats. Also, there was a significant decrease in basilar dendritic spine density in female rats with nOBX compared to the CON group. No changes were observed in this variable in male rats with nOBX. Our results allow us to suggest that there is sexual dimorphism in the effect of nOBX on the dorsal hippocampus and its relationship with spatial learning and memory processes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1863-2661 1863-2653 1863-2661 0340-2061 |
DOI: | 10.1007/s00429-023-02727-7 |