Modeling and Stability Analysis of Islanded DC Microgrids Under Droop Control
The stability of dc microgrids (MGs) depends on the control strategy adopted for each mode of operation. In an islanded operation mode, droop control is the basic method for bus voltage stabilization when there is no communication among the sources. In this paper, it is shown the consequences of dro...
Saved in:
Published in: | IEEE transactions on power electronics Vol. 30; no. 8; pp. 4597 - 4607 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-08-2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stability of dc microgrids (MGs) depends on the control strategy adopted for each mode of operation. In an islanded operation mode, droop control is the basic method for bus voltage stabilization when there is no communication among the sources. In this paper, it is shown the consequences of droop implementation on the voltage stability of dc power systems, whose loads are active and nonlinear, e.g., constant power loads. The set of parallel sources and their corresponding transmission lines are modeled by an ideal voltage source in series with an equivalent resistance and inductance. This approximate model allows performing a nonlinear stability analysis to predict the system qualitative behavior due to the reduced number of differential equations. Additionally, nonlinear analysis provides analytical stability conditions as a function of the model parameters and it leads to a design guideline to build reliable (MGs) based on safe operating regions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2014.2360171 |