Interpolation-Based Modeling of MIMO LPV Systems
This paper presents State-space Model Interpolation of Local Estimates (SMILE), a technique to estimate linear parameter-varying (LPV) state-space models for multiple-input multiple-output (MIMO) systems whose dynamics depends on multiple time-varying parameters, called scheduling parameters. The SM...
Saved in:
Published in: | IEEE transactions on control systems technology Vol. 19; no. 1; pp. 46 - 63 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-01-2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents State-space Model Interpolation of Local Estimates (SMILE), a technique to estimate linear parameter-varying (LPV) state-space models for multiple-input multiple-output (MIMO) systems whose dynamics depends on multiple time-varying parameters, called scheduling parameters. The SMILE technique is based on the interpolation of linear time-invariant models estimated for constant values of the scheduling parameters. As the linear time-invariant models can be either continuous- or discrete-time, both continuous- and discrete-time LPV models can be obtained. The underlying interpolation technique is formulated as a linear least-squares problem that can be efficiently solved. The proposed technique yields homogeneous polynomial LPV models in the multi-simplex that are numerically well-conditioned and therefore suitable for LPV control synthesis. The potential of the SMILE technique is demonstrated by computing a continuous-time interpolating LPV model for an analytic mass-spring-damper system and a discrete-time interpolating LPV model for a mechatronic -motion system based on experimental data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2010.2078509 |