EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR
We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.
Saved in:
Published in: | Annales de l'Institut Fourier Vol. 59; no. 2; pp. 515 - 542 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Grenoble
Association des annales de l'institut Fourier
2009
Association des Annales de l'Institut Fourier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature. |
---|---|
ISSN: | 0373-0956 1777-5310 |
DOI: | 10.5802/aif.2438 |