EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR

We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.

Saved in:
Bibliographic Details
Published in:Annales de l'Institut Fourier Vol. 59; no. 2; pp. 515 - 542
Main Authors: PACARD, Frank, SICBALDI, Pieralberto
Format: Journal Article
Language:English
Published: Grenoble Association des annales de l'institut Fourier 2009
Association des Annales de l'Institut Fourier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.
ISSN:0373-0956
1777-5310
DOI:10.5802/aif.2438