Optimum Transmission Through the Multiple-Antenna Gaussian Multiple Access Channel
This paper studies the optimal points in the capacity region of Gaussian multiple access channels (GMACs) with constant fading, multiple antennas, and various power constraints. The points of interest maximize general rate objectives that arise in practical communication scenarios. Achieving these p...
Saved in:
Published in: | IEEE transactions on information theory Vol. 62; no. 1; pp. 230 - 243 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-01-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the optimal points in the capacity region of Gaussian multiple access channels (GMACs) with constant fading, multiple antennas, and various power constraints. The points of interest maximize general rate objectives that arise in practical communication scenarios. Achieving these points constitutes the task of jointly optimizing the time-sharing parameters, the input covariance matrices, and the order of decoding used by the successive interference cancellation receiver. To approach this problem, Carathéodory's theorem is invoked to represent time-sharing and decoding orders jointly as a finite-dimensional matrix variable. This variable enables us to use variational inequalities to extend results pertaining to problems with linear rate objectives to more general, potentially nonconvex, problems, and to obtain a necessary and sufficient condition for the optimality of the transmission parameters in a wide range of problems. Using the insights gained from this condition, we develop and analyze the convergence of an algorithm for solving, otherwise daunting, GMAC-based optimization problems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2015.2502244 |