Maximally Decimated Paraunitary Linear Phase FIR Filter Bank Design via Iterative SVD Approach
A necessary and sufficient condition for M-channel maximally decimated paraunitary FIR filter banks is derived when the lengths of all the filters are the same and they are integer multiples of M. Based on the derived condition, a family of this kind of filter banks is defined. These results are als...
Saved in:
Published in: | IEEE transactions on signal processing Vol. 63; no. 2; pp. 466 - 481 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
15-01-2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A necessary and sufficient condition for M-channel maximally decimated paraunitary FIR filter banks is derived when the lengths of all the filters are the same and they are integer multiples of M. Based on the derived condition, a family of this kind of filter banks is defined. These results are also applied to the corresponding linear phase filter banks. Then, the design of this type of filter banks with the linear phase property is formulated as two orthogonal Procrustes optimization problems. The analytical solution of each optimization problem is derived based on a singular value decomposition approach. Since no numerical optimization computer aided design tool is required for finding the analytical solution of each optimization problem, the computational power required for our proposed method is much lower than that for existing methods. Computer numerical simulation results show that our proposed method can obtain a design instantaneously. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2014.2371779 |