Speed Control of Five-Phase Induction Motors With Integrated Open-Phase Fault Operation Using Model-Based Predictive Current Control Techniques

Fault tolerance is one of the most interesting features in stand-alone electric propulsion systems. Multiphase induction motor drives are presented like a better alternative to their three-phase counterparts because of their capability to withstand faulty situations, ensuring the postfault operation...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 61; no. 9; pp. 4474 - 4484
Main Authors: Guzman, Hugo, Duran, Mario J., Barrero, Federico, Bogado, Blas, Toral, Sergio
Format: Journal Article
Language:English
Published: New York IEEE 01-09-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fault tolerance is one of the most interesting features in stand-alone electric propulsion systems. Multiphase induction motor drives are presented like a better alternative to their three-phase counterparts because of their capability to withstand faulty situations, ensuring the postfault operation of the drive. Finite-control set model-based predictive control (FCS-MPC) has been introduced in the last decade like an interesting alternative to conventional controllers for the electrical torque and current regulation of multiphase drives. However, FCS-MPC strategies for multiphase drives with the ability to manage pre- and postfault operations have not been addressed at all. This paper proposes a fault-tolerant speed control for five-phase induction motor drives with the ability to run the system before and after an open-phase fault condition using an FCS-MPC strategy. Experimental results are provided in order to validate the functionality of the proposed control method, maintaining rated currents and ensuring fast and ripple-free torque response.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2013.2289882