Improving Performance and Quantifying Uncertainty of Body-Rocking Detection Using Bayesian Neural Networks

Body-rocking is an undesired stereotypical motor movement performed by some individuals, and its detection is essential for self-awareness and habit change. We envision a pipeline that includes inertial wearable sensors and a real-time detection system for notifying the user so that they are aware o...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) Vol. 13; no. 7; p. 338
Main Authors: da Silva, Rafael Luiz, Zhong, Boxuan, Chen, Yuhan, Lobaton, Edgar
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Body-rocking is an undesired stereotypical motor movement performed by some individuals, and its detection is essential for self-awareness and habit change. We envision a pipeline that includes inertial wearable sensors and a real-time detection system for notifying the user so that they are aware of their body-rocking behavior. For this task, similarities of body rocking to other non-related repetitive activities may cause false detections which prevent continuous engagement, leading to alarm fatigue. We present a pipeline using Bayesian Neural Networks with uncertainty quantification for jointly reducing false positives and providing accurate detection. We show that increasing model capacity does not consistently yield higher performance by itself, while pairing it with the Bayesian approach does yield significant improvements. Disparities in uncertainty quantification are better quantified by calibrating them using deep neural networks. We show that the calibrated probabilities are effective quality indicators of reliable predictions. Altogether, we show that our approach provides additional insights on the role of Bayesian techniques in deep learning as well as aids in accurate body-rocking detection, improving our prior work on this subject.
ISSN:2078-2489
2078-2489
DOI:10.3390/info13070338