Dual-Branched Spatio-Temporal Fusion Network for Multihorizon Tropical Cyclone Track Forecast

A tropical cyclone (TC) is a typical extreme tropical weather system, which could cause serious disasters in transit areas. Accurate TC track forecasting is the key to reducing casualties and damages, however, long-term forecasting of TCs is a challenging problem due to their extremely high dynamics...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 3842 - 3852
Main Authors: Liu, Zili, Hao, Kun, Geng, Xiaoyi, Zou, Zhengxia, Shi, Zhenwei
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A tropical cyclone (TC) is a typical extreme tropical weather system, which could cause serious disasters in transit areas. Accurate TC track forecasting is the key to reducing casualties and damages, however, long-term forecasting of TCs is a challenging problem due to their extremely high dynamics and uncertainty. Existing TC track forecasting methods mainly focus on utilizing a single modality of source data, meanwhile, suffer from limited long-term forecasting capability and high computational complexity. In this article, we propose to address the abovementioned challenges from a new perspective-by utilizing large-scale spatio-temporal multimodal historical data and advanced deep learning techniques. A novel multihorizon TC track forecasting model named dual-branched spatio-temporal fusion network (DBF-Net) is proposed and evaluated. DBF-Net contains a TC features branch that extracts temporal features from 2-D state vectors and a pressure field branch that extracts spatio-temporal features from reanalysis 3-D pressure field. We show that with the abovementioned design, DBF-Net can fully exploit the implicit associations of multimodal data, achieving advantages that unimodal data-based method does not have. Extensive experiments on 39 years of historical TCs track data in the Northwest Pacific show that our DBF-Net achieves significant accuracy improvement compared with previous TCs track forecast methods.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2022.3170299