Modular 50-kV IGBT Switch for Pulsed-Power Applications
In this paper, we describe the development of a modular semiconductor switch, based on the compact IGBT switch, presented at the 14th EML. Using a discrete 18-kV IGBT switching module, we tested first two and then three of these modules connected in series. The goal was to handle 30 kV with two swit...
Saved in:
Published in: | IEEE transactions on plasma science Vol. 39; no. 1; pp. 364 - 367 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-01-2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we describe the development of a modular semiconductor switch, based on the compact IGBT switch, presented at the 14th EML. Using a discrete 18-kV IGBT switching module, we tested first two and then three of these modules connected in series. The goal was to handle 30 kV with two switches and 50 kV with three switches. In order to have safe operating conditions during the experiments, the current was limited by the load resistor and should not exceed 500 A. All the tests were carried out as single-shot tests. To get a safe synchronous switching, it was necessary to have a trigger unit that is capable of creating a signal triggering all the modules at the same time. For this purpose, we used a trigger unit, which was inductively coupled by means of a ferrite core system to the modules, to create the gate signals for all the discrete IGBTs on the board simultaneously. With that experimental setup, we have shown that, by using the modular IGBT-based semiconductor switch, it is possible to handle 50 kV. Depending on the available load resistor, the current which could be handled amounted to 450 A at the maximum. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2010.2068061 |