Air quality and health benefits of increasing carbon mitigation tech-innovation in China

Most studies on the short-term local benefits of carbon mitigation technologies on air quality improvement and health focus on specific technologies such as biofuels or carbon sequestration technologies, while ignoring the overall role of the growing scale of low-carbon technologies. Based on STIRPA...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international Vol. 30; no. 3; pp. 6786 - 6804
Main Authors: Jin, Shunlin, Wang, Weidong, Ostic, Dragana, Zhang, Caijing, Lu, Na, Wang, Dong, Ni, Wenli
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most studies on the short-term local benefits of carbon mitigation technologies on air quality improvement and health focus on specific technologies such as biofuels or carbon sequestration technologies, while ignoring the overall role of the growing scale of low-carbon technologies. Based on STIRPAT model and EKC hypothesis, this paper takes 30 provinces in China from 2004 to 2016 as research samples. We builded the panel double fixed effect model to empirical analysis of climate change on carbon mitigation tech-innovation suppressing the influence of haze pollution, on this basis, the mediating effect model was used to explore the mediation function of industrial structure and energy structure. Meanwhile, we drawed on the existing studies on air quality and health benefits, and quantify the co-benefits of carbon mitigation tech-innovation on health through the equivalent substitution formula. It shows that a 1% increase in the number of low-carbon patent applications can reduce haze pollution by 0.066%. According to this estimate, to 2029, China’s carbon mitigation tech-innovation could reduce PM2.5 concentration to 15 μg/m 3 preventing 5.597 million premature deaths. Moreover, carbon mitigation tech-innovation can also indirectly inhibit haze pollution by triggering more systematic economic structure changes such as energy and industrial structure. Additionally, we found that the role of gray tech-innovation (GT) related to improving the efficiency of fossil energy is stronger than that of clean technology (CT) related to the use of renewable energy. This suggests that for a large economy such as China, where coal is still the dominant source of energy consumption, the short-term local benefits of improving air quality and health through the use of gray tech-innovation to improve energy and industrial structure are still important to balance the cost of carbon mitigation.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-022-22602-y