A new approach for radiosynoviorthesis: A dose‐optimized planning method based on Monte Carlo simulation and synovial measurement using 3D slicer and MRI

Purpose Recently, there has been a growing interest in a methodology for dose planning in radiosynoviorthesis to substitute fixed activity. Clinical practice based on fixed activity frequently does not embrace radiopharmaceutical dose optimization in patients. The aim of this paper is to propose and...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 44; no. 7; pp. 3821 - 3829
Main Authors: Torres Berdeguez, Mirta Bárbara, Thomas, Sylvia, Rafful, Patricia, Arruda Sanchez, Tiago, Medeiros Oliveira Ramos, Susie, Souza Albernaz, Marta, Vasconcellos de Sá, Lidia, Lopes de Souza, Sergio Augusto, Mas Milian, Felix, Silva, Ademir Xavier da
Format: Journal Article
Language:English
Published: United States 01-07-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Recently, there has been a growing interest in a methodology for dose planning in radiosynoviorthesis to substitute fixed activity. Clinical practice based on fixed activity frequently does not embrace radiopharmaceutical dose optimization in patients. The aim of this paper is to propose and discuss a dose planning methodology considering the radiological findings of interest obtained by three‐dimensional magnetic resonance imaging combined with Monte Carlo simulation in radiosynoviorthesis treatment applied to hemophilic arthropathy. Method The parameters analyzed were: surface area of the synovial membrane (synovial size), synovial thickness and joint effusion obtained by 3D MRI of nine knees from nine patients on a SIEMENS AVANTO 1.5 T scanner using a knee coil. The 3D Slicer software performed both the semiautomatic segmentation and quantitation of these radiological findings. A Lucite phantom 3D MRI validated the quantitation methodology. The study used Monte Carlo N‐Particle eXtended code version 2.6 for calculating the S‐values required to set up the injected activity to deliver a 100 Gy absorbed dose at a determined synovial thickness. The radionuclides assessed were: 90Y, 32P, 188Re, 186Re, 153Sm, and 177Lu, and the present study shows their effective treatment ranges. Result The quantitation methodology was successfully tested, with an error below 5% for different materials. S‐values calculated could provide data on the activity to be injected into the joint, considering no extra‐articular leakage from joint cavity. Calculation of effective treatment range could assist with the therapeutic decision, with an optimized protocol for dose prescription in RSO. Conclusion Using 3D Slicer software, this study focused on segmentation and quantitation of radiological features such as joint effusion, synovial size, and thickness, all obtained by 3D MRI in patients’ knees with hemophilic arthropathy. The combination of synovial size and thickness with the parameters obtained by Monte Carlo simulation such as effective treatment range and S‐value, from which is calculated the injected activity, could be used for treatment planning in RSO. Data from this methodology could be a potential aid to clinical decision making by selecting the most suitable radionuclide; justifying the procedure, fractioning the dose, and the calculated injected activity for children and adolescents, considering both the synovial size and thickness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0094-2405
2473-4209
DOI:10.1002/mp.12276