Prism refraction search: a novel physics-based metaheuristic algorithm
Single-solution-based optimization algorithms are computationally cheap yet powerful methods that can be used on various optimization tasks at minimal processing expenses. However, there is a considerable shortage of research in this domain, resulting in only a handful of proposed algorithms over th...
Saved in:
Published in: | The Journal of supercomputing Vol. 80; no. 8; pp. 10746 - 10795 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-05-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-solution-based optimization algorithms are computationally cheap yet powerful methods that can be used on various optimization tasks at minimal processing expenses. However, there is a considerable shortage of research in this domain, resulting in only a handful of proposed algorithms over the last four decades. This study proposes the Prism Refraction Search (PRS), a novel, simple yet efficient, single-solution-based metaheuristic algorithm for single-objective real-parameter optimization. PRS is a physics-inspired algorithm modeled on a well-known optimization paradigm in ray optics arising from the refraction of light through a triangular prism. The key novelty lies in its scientifically sound background that is supported by the well-established laws of physical optics. The proposed algorithm is evaluated on several numerical objectives, including 23 classical benchmark functions, the CEC-2017 test suite, and five standard real-world engineering design problems. Further, the results are analyzed using standard statistical tests to prove their significance. Extensive experiments and comparisons with state-of-the-art metaheuristic algorithms in the literature justify the robustness and competitive performance of the PRS algorithm as a lightweight and efficient optimization strategy. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-023-05790-3 |