Computational analysis of multiphase flow of non-Newtonian fluid through inclined channel: heat transfer analysis with perturbation method

The present investigation is based on the two-phase flow of a non-Newtonian fluid through a uniform channel with heat transfer. Stress tensor of third-grade fluid is taken into account to treat as non-Newtonian fluid. Two different types of viscous suspensions are formed with the tiny size Hafnium a...

Full description

Saved in:
Bibliographic Details
Published in:Computational particle mechanics Vol. 10; no. 5; pp. 1371 - 1381
Main Authors: Nazeer, Mubbashar, Alqarni, Mohammed Z., Hussain, Farooq, Saleem, S.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-09-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present investigation is based on the two-phase flow of a non-Newtonian fluid through a uniform channel with heat transfer. Stress tensor of third-grade fluid is taken into account to treat as non-Newtonian fluid. Two different types of viscous suspensions are formed with the tiny size Hafnium and crystal particles, respectively. Owing to the high magnetic susceptibility of the Hafnium metallic particles magnetic effects are applied, as well. Each magnetohydrodynamics bi-phase flow is caused, due to gravitational force. An asymptotic solution is obtained with the help of the “Regular perturbation method,” for the set nonlinear and coupled differential equations. A detailed parametric study is carried out to analyze the effective contribution of significant parameters and quantities. It is inferred that the strong magnetic effects and dominant viscous dissipation introduce additional thermal energy to the multiphase flow. Moreover, highly viscous multiphase suspensions are suitable in chemical industries to manufacture such paints and emulsions which contain small polymer particles.
ISSN:2196-4378
2196-4386
DOI:10.1007/s40571-023-00569-y