Numerical continuation in nonlinear experiments using local Gaussian process regression

Control-based continuation (CBC) is a general and systematic method to probe the dynamics of nonlinear experiments. In this paper, CBC is combined with a novel continuation algorithm that is robust to experimental noise and enables the tracking of geometric features of the response surface such as f...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 98; no. 4; pp. 2811 - 2826
Main Authors: Renson, L., Sieber, J., Barton, D. A. W., Shaw, A. D., Neild, S. A.
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-12-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Control-based continuation (CBC) is a general and systematic method to probe the dynamics of nonlinear experiments. In this paper, CBC is combined with a novel continuation algorithm that is robust to experimental noise and enables the tracking of geometric features of the response surface such as folds. The method uses Gaussian process regression to create a local model of the response surface on which standard numerical continuation algorithms can be applied. The local model evolves as continuation explores the experimental parameter space, exploiting previously captured data to actively select the next data points to collect such that they maximise the potential information gain about the feature of interest. The method is demonstrated experimentally on a nonlinear structure featuring harmonically coupled modes. Fold points present in the response surface of the system are followed and reveal the presence of an isola, i.e. a branch of periodic responses detached from the main resonance peak.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-019-05118-y