An Improved IDAF-FIT Clustering Based ASLPP-RR Routing with Secure Data Aggregation in Wireless Sensor Network

In recent years, Wireless Sensor Network (WSN) became a key technology for monitoring and tracking applications in a wide application range. Still, an energy-efficient data gathering protocol has become the most challenging issue. This is because each sensor node in the network is equipped with limi...

Full description

Saved in:
Bibliographic Details
Published in:Mobile networks and applications Vol. 26; no. 3; pp. 1059 - 1067
Main Authors: Babu, M. Vasim, Alzubi, Jafar A., Sekaran, Ramesh, Patan, Rizwan, Ramachandran, Manikandan, Gupta, Deepak
Format: Journal Article
Language:English
Published: New York Springer US 01-06-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, Wireless Sensor Network (WSN) became a key technology for monitoring and tracking applications in a wide application range. Still, an energy-efficient data gathering protocol has become the most challenging issue. This is because each sensor node in the network is equipped with limited energy resources. To achieve better energy efficiency, better network communication, and minimized delay, clustering is introduced. Therefore, the clustering-based techniques for data gathering play a vital role in terms of energy-saving and increasing the lifetime of the network due to cluster head election and data aggregation. In this proposed methodology, the Integration of Distributed Autonomous Fashion with Fuzzy If-then Rules (IDAF-FIT) algorithm is proposed for clustering, and also the Cluster Head (CH) is elected in the meanwhile. After that, to transmit the packet from source to the destination node by choosing an optimal path, the routing concept is initiated. For this purpose, an Adaptive Source Location Privacy Preservation Technique using Randomized Routes (ASLPP-RR) is presented for routing. Also, Secure Data Aggregation based on Principle Component Analysis (SDA-PCA) algorithm is performed with end-to-end confidentiality and integrity. Finally, the security of confidential data is analyzed properly to obtain a better result than the existing approaches. The overall performance of the proposed methodology when compared with existing is expressed in terms of 20% higher packet delivery ratio, 15% lower packet dropping ratio, 18% higher residual energy, 22% higher network lifetime, and 16% lower energy consumption.
ISSN:1383-469X
1572-8153
DOI:10.1007/s11036-020-01664-7