Austenite Stability and Strain Hardening in C-Mn-Si Quenching and Partitioning Steels

Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instanta...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Vol. 51; no. 5; pp. 2025 - 2034
Main Authors: Finfrock, Christopher B., Clarke, Amy J., Thomas, Grant A., Clarke, Kester D.
Format: Journal Article
Language:English
Published: New York Springer US 01-05-2020
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-020-05666-8