An image encryption approach based on chaotic maps and genetic operations
This paper puts forward an image encryption approach using chaotic maps and genetic operations. First, the Keccak algorithm is employed to compute the hash values of a plain-image as the initial values for chaotic map. The sensitivity and pseudo randomness of chaotic map used for the initial conditi...
Saved in:
Published in: | Multimedia tools and applications Vol. 79; no. 35-36; pp. 25613 - 25633 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-09-2020
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper puts forward an image encryption approach using chaotic maps and genetic operations. First, the Keccak algorithm is employed to compute the hash values of a plain-image as the initial values for chaotic map. The sensitivity and pseudo randomness of chaotic map used for the initial conditions allows for pseudorandom sequences to be obtained by iterative logistic map to shuffle and permute the pixel positions and values of the image. Second, in combination with the Hénon map and the DNA coding technique, genetic operations at the bit level are used to achieve pixel selection, crossover and mutation, as well as further completion of pixel diffusion and scrambling, which significantly increases the difficulty of deciphering the algorithm. Finally, the diffusion and confusion features of the algorithm are further strengthened by bidirectional exclusive OR operations with chaotic sequences. The theoretical analysis and simulation results indicate that the algorithm is sensitive to keys and can effectively defend statistical and differential attacks, indicating that it has good security and application potential. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-020-09237-2 |