Spontaneous Hybrid Nano‐Domain Behavior of the Organic–Inorganic Hybrid Perovskites
In hybrid perovskites, the organic molecules and inorganic frameworks exhibit distinct static and dynamic characteristics. Their coupling will lead to fascinating phenomena, such as large polarons, dynamic Rashba–Dresselhaus effects, etc. In this paper, deep potential molecular dynamics (DPMD) is em...
Saved in:
Published in: | Advanced functional materials Vol. 33; no. 32 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc
01-08-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In hybrid perovskites, the organic molecules and inorganic frameworks exhibit distinct static and dynamic characteristics. Their coupling will lead to fascinating phenomena, such as large polarons, dynamic Rashba–Dresselhaus effects, etc. In this paper, deep potential molecular dynamics (DPMD) is employed, a large‐scale MD simulation scheme with DFT accuracy, to study hybrid perovskites formamidinium lead iodide (FAPbI3) and methylamonium lead iodide (MAPbI3). A spontaneous hybrid nano‐domain behavior, namely multiple molecular rotation nano‐domains embedded into a single [PbI6]4− octahedra rotation domain, is first discovered at low temperatures. The behavior originates from the interplay between the long range order of molecular rotation and local lattice deformation, and clarifies the puzzling structural features of FAPbI3 at low temperatures. The work provides new insights into the structural characteristics and stability of hybrid perovskite, as well as new ideas for the structural characterization of organic–inorganic coupled systems.
Organic–inorganic hybrid perovskites exhibit an intriguing series of structural phase transitions with varying temperatures, due to the coupled feature of molecules and the periodic lattice. When temperature is decreased, spontaneous hybrid nano‐domain structures form, which results in abnormal symmetry enhancement of the diffraction patterns. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202301663 |