Analytical Study on Dynamic Response Due to a Moving Load on Distinctly Characterized Orthotropic Half-Spaces Under Different Physical Conditions with Comparative Approach

The present article analyzes the induced compressive, shear and tensile stresses due to a moving load on three distinctly characterized irregular orthotropic half-spaces, viz. functionally graded orthotropic viscoelastic half-space (Case-I), functionally graded initially stressed orthotropic elastic...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) Vol. 44; no. 5; pp. 4863 - 4883
Main Authors: Singh, A. K., Pal, M. K., Negi, A., Mistri, K. Ch
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-05-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present article analyzes the induced compressive, shear and tensile stresses due to a moving load on three distinctly characterized irregular orthotropic half-spaces, viz. functionally graded orthotropic viscoelastic half-space (Case-I), functionally graded initially stressed orthotropic elastic half-space (Case-II) and orthotropic magnetoelastic half-space (Case-III) under hydrostatic initial stress. The expressions for said induced stresses are deduced in closed form using analytical approach. The influences of various physical parameters, viz. maximum depth of irregularity, functionally gradedness, irregularity factor, initial stress, magnetoelastic coupling parameter, hydrostatic initial stress and frictional coefficient on induced stresses for concerned cases, have been investigated with a comparative analysis. To depict the outcomes numerically, the half-spaces comprised of Carbon fiber, Prepreg and T300/5208/graphite/epoxy material have been taken into account and the observations are highlighted. Moreover, some notable characteristics have been outlined and delineated through graphs.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-018-3577-4