Investigation of Adsorption Kinetics on the Surface of a Copper-Containing Silicon–Carbon Gas Sensor: Gas Identification
The low selectivity of materials to gases of a similar nature may limit their use as sensors. Knowledge of the adsorption kinetic characteristics of each gas on the surface of the material may enable the ability to identify them. In this work, copper-containing silicon–carbon films were formed using...
Saved in:
Published in: | C (Basel) Vol. 9; no. 4; p. 104 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The low selectivity of materials to gases of a similar nature may limit their use as sensors. Knowledge of the adsorption kinetic characteristics of each gas on the surface of the material may enable the ability to identify them. In this work, copper-containing silicon–carbon films were formed using electrochemical deposition on the Al2O3 substrate with interdigitated Cr/Cu/Cr electrodes. These films showed good adsorption characteristics with several different gases. The adsorption kinetics of nitrogen dioxide, sulfur dioxide, and carbon monoxide on the film surface were investigated by the change in the resistivity of the material. Pseudo-first-order and pseudo-second-order kinetics, Elovich, Ritchie, and Webber intraparticle diffusion models were applied. It was found that the largest approximation factor and the lowest Root-Mean-Square Error and Mean Bias Error for all three gases were for the Elovich model. The advantages of silicon–carbon copper-containing films for gas sensor applications were shown. An algorithm for gas recognition was proposed based on the dependence of the change in the resistivity of the material under stepwise gas exposure. It was found that parameters such as the values of the extrema of the first and second derivatives of the R vs. t dependence during adsorption and the slope of R vs. t dependence in the Elovich coordinates are responsible for gas identification among several one-nature gases. |
---|---|
ISSN: | 2311-5629 2311-5629 |
DOI: | 10.3390/c9040104 |