Evaluation of water quality trends in the Maroon River Basin, Iran, from 1990 to 2010 by WQI and multivariate analyses
This research aimed to investigate the long-term spatiotemporal changes of surface water quality of the Maroon River by implementing Water Quality Index (WQI) and multivariate statistical analyses such as non-metric multidimensional scaling and cluster analyses, as complementary tools to investigate...
Saved in:
Published in: | Environmental earth sciences Vol. 76; no. 22; pp. 1 - 13 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-11-2017
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research aimed to investigate the long-term spatiotemporal changes of surface water quality of the Maroon River by implementing Water Quality Index (WQI) and multivariate statistical analyses such as non-metric multidimensional scaling and cluster analyses, as complementary tools to investigate spatial variations in water quality parameters and also delineate areas in terms of water quality conditions in the period under study. The other purposes of this study were to evaluate the physicochemical properties of the Maroon River water and assess the effects of each water quality parameter on the WQI values. Relationship between quality scale of hydrochemical parameters and the resulting WQI scores was determined employing linear regression analysis. Moreover, the suitability of water quality was evaluated for irrigation purposes using conventional indices, electrical conductivity (EC), sodium adsorption ratio (SAR), and percent sodium (Na%). The monitoring stations were placed in high and very high categories according to the assessment of irrigation water quality with EC. Considering WQI, the upper (S1, S2, and S4) and lower (S3, S5, and S6) monitoring stations of the Maroon River distributed in category C3 (high salinity) and C4–C5 (very high salinity), respectively. The findings of WQI presented an increasing trend from upstream toward downstream in the Maroon River. The findings of the linear regression analysis showed no significant correlation between WQI scores with pH and SO
4
2−
concentrations even though the relationship is weak. These results suggest that pH and SO
4
2−
concentrations could be the secondary driving parameters behind the variations in WQI scores. It can be inferred that the Maroon River water is appropriate for irrigation based on Na% and SAR. However, it also exhibits high EC. Therefore, for mitigating the adverse impacts of polluted water authors recommend multidimensional management practices such as transferable discharge permit programs in the study area. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-017-7132-5 |