A multistrain probiotic reduces sarcopenia by modulating Wnt signaling biomarkers in patients with chronic heart failure
The muscle decline due to aging, called sarcopenia and functional compromise, are common occurrences in patients with chronic heart failure (CHF). Intestinal dysbiosis and the alterations in Wnt signaling may partly account for these findings. We investigated the effects of a multistrain probiotic o...
Saved in:
Published in: | Journal of cardiology Vol. 80; no. 5; pp. 449 - 455 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-11-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The muscle decline due to aging, called sarcopenia and functional compromise, are common occurrences in patients with chronic heart failure (CHF). Intestinal dysbiosis and the alterations in Wnt signaling may partly account for these findings. We investigated the effects of a multistrain probiotic on Wnt signaling biomarkers and their associations with sarcopenia and functional capacity in CHF patients.
The CHF patients were randomized into placebo (n = 48) and probiotic (n = 44) groups for 12 weeks. We measured circulating markers of intestinal permeability (zonulin) and Wnt signaling (dickkopf-1, Dkk-1; dickkopf-3, Dkk-3), and sterol regulatory element-binding protein-1 (SREBP1), handgrip strength (HGS), and short physical performance battery (SPPB) scores at baseline and after probiotics treatment.
Probiotics treatment improved HGS, gait speed, and plasma Dkk-1, and reduced plasma zonulin, Dkk-3, and SREBP1 in CHF patients (all p < 0.05). Among sarcopenia indexes, HGS showed robust correlations with the three Wnt biomarkers (all p < 0.05). Probiotic treatment also improved the SPPB scores in CHF patients, which were strongly correlated with Dkk-3, followed by Dkk-1, and SREBP1 (all p < 0.05). SREBP1 and Dkk-3 demonstrated significant potential in diagnosing sarcopenia in CHF patients. Probiotics also reduced the plasma markers of inflammation and oxidative stress in CHF patients.
The multistrain probiotic reduces sarcopenia and improves functional capacity in CHF patients by modulating Wnt signaling.
[Display omitted]
•Patients with chronic heart failure (CHF) exhibit age-related muscle decline, termed sarcopenia.•Probiotics reduce sarcopenia and improve physical capacity in CHF patients.•Modulation of Wnt signaling may account for positive effects of probiotics in CHF. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 0914-5087 1876-4738 |
DOI: | 10.1016/j.jjcc.2022.06.006 |