Optimized Bioleaching Pre-treatment of UG-2 PGM Flotation Concentrate Using Design of Experiments

The depletion of the Merensky ore has led the South African platinum industry into largely mining and processing Upper Group Two (UG-2) ore for the extraction of Platinum Group Metals (PGMs). However, the processing of the UG-2 material is not fully amenable to the conventional pyrometallurgical rou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sustainable metallurgy Vol. 10; no. 2; pp. 525 - 541
Main Authors: Shemi, A., Chipise, L., Yah, C. S., Kumar, A., Moodley, S., Rumbold, K., Simate, G., Ndlovu, S.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The depletion of the Merensky ore has led the South African platinum industry into largely mining and processing Upper Group Two (UG-2) ore for the extraction of Platinum Group Metals (PGMs). However, the processing of the UG-2 material is not fully amenable to the conventional pyrometallurgical route due to the high chrome content. Therefore, in this study, a bio-based process for base metal extraction from UG-2 flotation concentrates was investigated. This study represents only part of the work done in a broader investigation to develop a completely biological two-stage process for the extraction of base metals and PGEs. In this paper, only the first stage of the process is presented. This study evaluated a mixture of indigenous thermoacidophile archaebacteria namely, Acidianus brierleyi, Sulfolobus sp. , and Metallosphaera sedula . A statistical Design of Experiments (DOE) was used for finding optimal conditions. Factors investigated included particle size, pH, pulp density, inoculum dosage, and temperature. Optimal extraction efficiencies of 92% for Co, 97% for Cu, and 99% for Ni were predicted at correlation coefficients of 92.5%, 93.2%, and 88.0%, respectively, thus, verifying the fitness of the model. Optimal base metal extractions obtained were 99.3% for Co, 90.1% for Cu, 41.58% for Fe, and 99.5% for Ni. The results showed a substantial extraction of base metals from UG-2 PGM flotation concentrate suggesting a potentially feasible option for industrial bioprocessing of PGM concentrates. To the best of the authors’ knowledge, this is the first report on bioleaching of base metals from UG-2 flotation concentrates. Graphical Abstract
ISSN:2199-3823
2199-3831
DOI:10.1007/s40831-024-00800-x