Diabetes-induced changes in cardiac voltage-gated ion channels
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopa...
Saved in:
Published in: | World journal of diabetes Vol. 12; no. 1; pp. 1 - 18 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Baishideng Publishing Group Inc
15-01-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K
currents, Na
currents and L-type Ca
currents along with impaired Ca
homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Author contributions: Ozdemir S designed the study and wrote the manuscript; Uslu S and Ozturk N collected the data and drafted the review article. Corresponding author: Semir Ozdemir, PhD, Professor, Department of Biophysics, Akdeniz University Faculty of Medicine, Dumlupınar Boulevard, Antalya 07058, Turkey. osemir@akdeniz.edu.tr |
ISSN: | 1948-9358 1948-9358 |
DOI: | 10.4239/wjd.v12.i1.1 |