Prediction of burden distribution and electrical resistance in submerged arc furnaces using discrete element method modelling
A computational model of a submerged arc furnace (SAF) used in the production of ferrochrome is presented. The model's intended use is to investigate the extent to which intrinsic and extrinsic properties of the raw materials affect burden distribution and electrical resistance within the furna...
Saved in:
Published in: | Journal of the Southern African Institute of Mining and Metallurgy Vol. 124; no. 3; pp. 123 - 132 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-03-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A computational model of a submerged arc furnace (SAF) used in the production of ferrochrome is presented. The model's intended use is to investigate the extent to which intrinsic and extrinsic properties of the raw materials affect burden distribution and electrical resistance within the furnace. The model is built on the discrete element method and calculates the mechanical interactions of particle distributions resulting from the flow motion of typical raw materials used in the smelting of chromium ore. This model excludes the effects of thermodynamics, furnace chemistry, and heat transfer. It illustrates how the consumption of materials (chromite pellets, flux, and reductant) is affected by changes in electrode length, reductant fractions, and reductant sizing and density during the formation of a reductant bed. The resistance calculation algorithm developed by Mintek was applied to construct networks developed from particle contacts, which can quantitatively generate estimates of the electrode-to-electrode and electrode-to-bath electrical conduction conditions. |
---|---|
ISSN: | 2225-6253 2411-9717 |
DOI: | 10.17159/2411-9717/3042/2024 |