Scattering in a partially open waveguide: the forward problem

This paper is devoted to an acoustic scattering problem in a 2D partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a ‘bounded’ cross-section, while the right part is bounded in the transverse direction by some perfectly matched layers that mimic the si...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of applied mathematics Vol. 88; no. 1; pp. 102 - 151
Main Authors: Bourgeois, Laurent, Fliss, Sonia, Fritsch, Jean-François, Hazard, Christophe, Recoquillay, Arnaud
Format: Journal Article
Language:English
Published: Oxford University Press (OUP) 01-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is devoted to an acoustic scattering problem in a 2D partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a ‘bounded’ cross-section, while the right part is bounded in the transverse direction by some perfectly matched layers that mimic the situation of an open waveguide, that is with an ‘unbounded’ cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.
ISSN:0272-4960
1464-3634
DOI:10.1093/imamat/hxad004