Scattering in a partially open waveguide: the forward problem
This paper is devoted to an acoustic scattering problem in a 2D partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a ‘bounded’ cross-section, while the right part is bounded in the transverse direction by some perfectly matched layers that mimic the si...
Saved in:
Published in: | IMA journal of applied mathematics Vol. 88; no. 1; pp. 102 - 151 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford University Press (OUP)
01-04-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is devoted to an acoustic scattering problem in a 2D partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a ‘bounded’ cross-section, while the right part is bounded in the transverse direction by some perfectly matched layers that mimic the situation of an open waveguide, that is with an ‘unbounded’ cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation. |
---|---|
ISSN: | 0272-4960 1464-3634 |
DOI: | 10.1093/imamat/hxad004 |