CLAIRE: First light for a gamma-ray lens
The objective of the R&D project CLAIRE was to prove the principle of a gamma-ray lens for nuclear astrophysics. CLAIRE's Laue diffraction lens has a diameter of 45 cm and a focal length of 277 cm; 556 germanium-silicon crystals are tuned to focus 170 keV photons onto a 1.5 cm diameter foca...
Saved in:
Published in: | Experimental astronomy Vol. 20; no. 1-3; pp. 253 - 267 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Springer Link
01-12-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of the R&D project CLAIRE was to prove the principle of a gamma-ray lens for nuclear astrophysics. CLAIRE's Laue diffraction lens has a diameter of 45 cm and a focal length of 277 cm; 556 germanium-silicon crystals are tuned to focus 170 keV photons onto a 1.5 cm diameter focal spot. Laboratory measurements of the individual crystals and the entire lens have been used to validate a numerical model that we use to estimate the lens performance for a source at infinity. During a stratospheric balloon flight on 2001 June 14, CLAIRE was directed at the Crab nebula by a pointing system able to stabilize the lens to within a few arcseconds of the target. In 72 min of valid pointing time, 33 photons from the Crab were detected in the 3 keV bandpass of the lens: CLAIRE's first light! The performance of CLAIRE's gamma-ray lens, namely the peak reflectivity for a polychromatic source (9±1%), has been confirmed by ground data obtained on a 205 meter long test range. CLAIRE's measured performance validates the principle of a Laue lens for nuclear astrophysics, opening the way for a space-borne gamma-ray lens telescope that will achieve one to two orders of magnitude improvement in sensitivity over present technologies. |
---|---|
ISSN: | 0922-6435 1572-9508 |
DOI: | 10.1007/s10686-006-9071-0 |