Chaotic diffusion for particles moving in a time dependent potential well

•Diffusion equation applied to study chaotic diffusion.•Scaling invariance is obtained from the probability distribution.•Critical exponents confirm the scaling invariance. The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. A Vol. 384; no. 28; p. 126737
Main Authors: Leonel, Edson D., Kuwana, Célia Mayumi, Yoshida, Makoto, de Oliveira, Juliano Antonio
Format: Journal Article
Language:English
Published: Elsevier B.V 09-10-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Diffusion equation applied to study chaotic diffusion.•Scaling invariance is obtained from the probability distribution.•Critical exponents confirm the scaling invariance. The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2020.126737