Mechanism of ultrasonic vibration effects on adhesively bonded ceramic matrix composites joints

Ultrasonic vibration treatment is being utilized to improve adhesive bonding performance, but the mechanisms remain unclear. Moreover, few studies have been carried out on improvement of adhesive bonding of ceramic matrix composites (CMCs) by ultrasonic vibration. In this work, a mathematical model...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international Vol. 47; no. 23; pp. 33214 - 33222
Main Authors: Yan, Lutao, Chen, Wang, Li, Haiyuan, Zhang, Qinjian
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-12-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasonic vibration treatment is being utilized to improve adhesive bonding performance, but the mechanisms remain unclear. Moreover, few studies have been carried out on improvement of adhesive bonding of ceramic matrix composites (CMCs) by ultrasonic vibration. In this work, a mathematical model based on fluid mechanics and capillary rise theory is developed to determine the adhesive penetration ability. The effect of ultrasonic vibration on adhesive bonding performance of CMCs is studied. Based on the experimental results, a good agreement is found with respect to measurements of hydraulic force and pressure. Ultrasonic vibration-assisted processing can improve interfacial adhesion strength due to adhesive has high wettability and penetration ability. Furthermore, it is found that delamination and ply-delamination are the main failure modes for all conditions, but porous areas are reduced by ultrasonic treatment.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2021.08.222