Enhanced High-Performance iPP/TPU/MWCNT Nanocomposite for Electromagnetic Interference Shielding
The rapid development of electronic communication technology has led to an undeniable issue of electromagnetic pollution, prompting widespread attention from researchers to the study of electromagnetic shielding materials. Herein, a simple and feasible method of melt blending was applied to prepare...
Saved in:
Published in: | Polymers Vol. 16; no. 13; p. 1837 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
27-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rapid development of electronic communication technology has led to an undeniable issue of electromagnetic pollution, prompting widespread attention from researchers to the study of electromagnetic shielding materials. Herein, a simple and feasible method of melt blending was applied to prepare iPP/TPU/MWCNT nanocomposites with excellent electromagnetic shielding performance. The addition of maleic anhydride-grafted polypropylene (PP-g-MAH) effectively improved the interface compatibility of iPP and TPU. A double continuous structure within the matrix was achieved by controlling the iPP/TPU ratio at 4:6, while the incorporation of multi-walled carbon nanotubes endowed the composites with improved electromagnetic shielding properties. Furthermore, by regulating the addition sequence of raw materials during the melt-blending process, a selective distribution of carbon nanotubes in the TPU matrix was achieved, thereby constructing interconnected conductive networks within the composites, significantly enhancing the electromagnetic shielding performance of iPP/TPU/MWCNTs, which achieved a maximum EMI shielding efficiency of 37.8 dB at an iPP/TPU ratio of 4:6 and an MWCNT concentration of 10 wt.%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16131837 |