A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity

Higher-plant chloroplasts alter the distribution of absorbed radiant energy between photosynthesis and heat formation in response to changing illumination level or environmental stress. Fluorescence imaging was used to screen 62 yellow-green T-DNA insertion mutant lines of Arabidopsis thaliana (L.)...

Full description

Saved in:
Bibliographic Details
Published in:Planta Vol. 210; no. 2; pp. 205 - 214
Main Authors: PETERSON, R. B, HAVIR, E. A
Format: Journal Article
Language:English
Published: Berlin Springer 01-01-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Higher-plant chloroplasts alter the distribution of absorbed radiant energy between photosynthesis and heat formation in response to changing illumination level or environmental stress. Fluorescence imaging was used to screen 62 yellow-green T-DNA insertion mutant lines of Arabidopsis thaliana (L.) Heynh. for reduced photoprotective nonphotochemical quenching (NPQ) capacity. Pulse-modulation fluorometry was employed to characterize one line (denoted Lsr1(-)) that exhibited an approximately 50% reduction in NPQ compared to the wild type (WT). The loss in NPQ capacity was associated with the DeltapH-dependent phase of quenching (qE). Under the growth conditions employed, pigment composition and levels of the six photosystem-II light-harvesting chlorophyll a/b proteins were identical in mutant and WT. Changes in the in-vivo levels of the xanthophyll pigments violaxanthin, antheraxanthin, and zeaxanthin in excess light were the same for mutant and WT. However, use of the violaxanthin de-epoxidase inhibitor dithiothreitol indicated that a zeaxanthin-dependent component of NPQ was specifically reduced in the mutant. The mutant exhibited diminished suppression of minimum fluorescence yield (F(o)) in intense light suggesting an altered threshold in the mechanism of response to light stress in the mutant. The NPQ-deficient phenotype was meiotically transmissible as a semidominant trait and mapped near marker T27K12 on chromosome 1. The results suggest that the mutant is defective in sensing the transthylakoid DeltapH that reports exposure to excessive illumination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0935
1432-2048
DOI:10.1007/PL00008127