Tribocorrosion Behaviour of Ti6Al4V Produced by Selective Laser Melting for Dental Implants

Additively produced Ti6Al4V implants display mechanical properties that are economically infeasible to achieve with conventional subtractive methods. The aim of the present research work was to characterize the tribocorrosion behaviour of the newly produced Ti6Al4V, also known as titanium grade 5, b...

Full description

Saved in:
Bibliographic Details
Published in:Lubricants Vol. 8; no. 2; p. 22
Main Authors: Vilhena, Luís M., Shumayal, Ahmad, Ramalho, Amílcar, Ferreira, José António Martins
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-02-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Additively produced Ti6Al4V implants display mechanical properties that are economically infeasible to achieve with conventional subtractive methods. The aim of the present research work was to characterize the tribocorrosion behaviour of the newly produced Ti6Al4V, also known as titanium grade 5, by a selective laser melting (SLM) technique and compare it with another specimen produced by a conventional method. It was found that the tribological properties were of the same order, with the wear rate being k= 6.3 × 10−4 mm3/N·m and k = 8.3 × 10−4 mm3/N·m for respectively, SLM and conventional method. Regarding the friction behaviour, both methods exhibited similar COF in the order of 0.41–0.51. However, electrochemically, the potentiodynamic polarization curves presented some differences mainly in the potential range of the passive films and passive current density formed, with the passive current density being lower for the SLM method.
ISSN:2075-4442
2075-4442
DOI:10.3390/lubricants8020022