Stability of thin wetting films on chemically nanostructured surfaces
The morphology and stability of thin volatile wetting films on model chemically patterned surfaces composed of periodic arrays of alternating completely and partially wettable nanostripes are investigated. The equilibrium film morphology is recorded as a function of undersaturation using noncontact...
Saved in:
Published in: | Physical review letters Vol. 109; no. 16; p. 166101 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
19-10-2012
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The morphology and stability of thin volatile wetting films on model chemically patterned surfaces composed of periodic arrays of alternating completely and partially wettable nanostripes are investigated. The equilibrium film morphology is recorded as a function of undersaturation using noncontact atomic force microscopy. Films spanning the entire pattern are found to be stable only for thicknesses in excess of a critical value, h(c), whereas thinner films spontaneously dewet the partially wettable regions of the substrate. The critical thickness h(c) increases linearly with the width of the partially wettable stripes in good agreement with an interface displacement model derived from microscopic density functional theory. These results provide detailed insights into the dewetting of thin films driven by competing intermolecular forces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.109.166101 |