Calibration method for 2D instantaneous OH-PLIF temperature measurements in flame

Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is researched and developed. This method is based on the calibration experiments with a la...

Full description

Saved in:
Bibliographic Details
Published in:Chinese optics letters Vol. 11; no. 5; pp. 65 - 68
Main Author: 陈爽 苏铁 杨富荣 张龙 郑尧邦
Format: Journal Article
Language:English
Published: 01-05-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is researched and developed. This method is based on the calibration experiments with a laminar premixed flame and thermocouple, and avoids complex calculation and uncertainty of the spectrum parameters. Measurements for a flat burner at ambient temperature under atmospheric pressure are also presented; calibration results are used to diagnose a supersonic combustion in scramjet combustor. The conclusion indicates that this method is useful, and a better precision of calibration can be acquired by correcting the line shapes of the spectral lines and lasers.
Bibliography:31-1890/O3
Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is researched and developed. This method is based on the calibration experiments with a laminar premixed flame and thermocouple, and avoids complex calculation and uncertainty of the spectrum parameters. Measurements for a flat burner at ambient temperature under atmospheric pressure are also presented; calibration results are used to diagnose a supersonic combustion in scramjet combustor. The conclusion indicates that this method is useful, and a better precision of calibration can be acquired by correcting the line shapes of the spectral lines and lasers.
ISSN:1671-7694
DOI:10.3788/COL201311.053001