Using breeding and quantitative genetics to understand the C4 pathway
Reducing photorespiration in C3 crops could significantly increase rates of photosynthesis and yield. One method to achieve this would be to integrate C4 photosynthesis into C3 species. This objective is challenging as it involves engineering incompletely understood traits into C3 leaves, including...
Saved in:
Published in: | Journal of experimental botany Vol. 73; no. 10; pp. 3072 - 3084 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
23-05-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reducing photorespiration in C3 crops could significantly increase rates of photosynthesis and yield. One method to achieve this would be to integrate C4 photosynthesis into C3 species. This objective is challenging as it involves engineering incompletely understood traits into C3 leaves, including complex changes to their biochemistry, cell biology, and anatomy. Quantitative genetics and selective breeding offer underexplored routes to identify regulators of these processes. We first review examples of natural intraspecific variation in C4 photosynthesis as well as the potential for hybridization between C3 and C4 species. We then discuss how quantitative genetic approaches including artificial selection and genome-wide association could be used to better understand the C4 syndrome and in so doing guide the engineering of the C4 pathway into C3 crops. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erab486 |