Deep learning convolutional neural network ResNet101 and radiomic features accurately analyzes mpMRI imaging to predict MGMT promoter methylation status with transfer learning approach

Accurate brain tumor classification is crucial for enhancing the diagnosis, prognosis, and treatment of glioblastoma patients. We employed the ResNet101 deep learning method with transfer learning to analyze the 2021 Radiological Society of North America (RSNA) Brain Tumor challenge dataset. This da...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology Vol. 34; no. 2
Main Authors: Shim, Seong‐O, Hussain, Lal, Aziz, Wajid, Alshdadi, Abdulrahman A., Alzahrani, Abdulrahman, Omar, Abdulfattah
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-03-2024
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate brain tumor classification is crucial for enhancing the diagnosis, prognosis, and treatment of glioblastoma patients. We employed the ResNet101 deep learning method with transfer learning to analyze the 2021 Radiological Society of North America (RSNA) Brain Tumor challenge dataset. This dataset comprises four structural magnetic resonance imaging (MRI) sequences: fluid‐attenuated inversion‐recovery (FLAIR), T1‐weighted pre‐contrast (T1w), T1‐weighted post‐contrast (T1Gd), and T2‐weighted (T2). We assessed the model's performance using standard evaluation metrics. The highest performance to detect MGMT methylation status for patients suffering glioblastoma was an accuracy (85.48%), sensitivity (80.64%), specificity (90.32%). Whereas classification performance with no tumor was yielded with accuracy (85.48%), sensitivity (90.32%), specificity (80.64%). The radiomic features (74) computed with ensembled Bagged Tree and relief feature selection method (30/74) improved the validation accuracy of 84.3% and AUC of 0.9038 to detect. O6‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation status in glioblastoma patients holds promise for optimizing treatment planning and prognosis. By understanding MGMT methylation status, clinicians can make informed decisions about treatment strategies, potentially leading to improved clinical outcomes.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.23059