POINT CLOUD AND DIGITAL SURFACE MODEL GENERATION FROM HIGH RESOLUTION MULTIPLE VIEW STEREO SATELLITE IMAGERY

Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied P...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLII-2; pp. 363 - 370
Main Authors: Gong, K., Fritsch, D.
Format: Journal Article
Language:English
Published: Copernicus Publications 30-05-2018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs’ generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLII-2-363-2018