Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers

The aim of this study was to evaluate the biodistribution of dextran-coated iron oxide nanoparticles labeled with gallium-67 (Ga) in various organs by intravenous injection in Balb/c mice. Ultrasmall superparamagnetic iron oxide (USPIO) was successively labeled with Ga-chloride after chelation with...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear medicine communications Vol. 34; no. 9; pp. 915 - 925
Main Authors: Shanehsazzadeh, Saeed, Oghabian, Mohammad A, Lahooti, Afsaneh, Abdollahi, Mohammad, Abolghasem Haeri, Seyed, Amanlou, Massoud, Daha, Fariba J, Allen, Barry J
Format: Journal Article
Language:English
Published: England 01-09-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to evaluate the biodistribution of dextran-coated iron oxide nanoparticles labeled with gallium-67 (Ga) in various organs by intravenous injection in Balb/c mice. Ultrasmall superparamagnetic iron oxide (USPIO) was successively labeled with Ga-chloride after chelation with freshly prepared cyclic DTPA-dianhydride. The labeling efficiency of USPIOs labeled with Ga is above 98%. Sixty-five mice were killed at 13 different time points. The percentage of injected dose per gram of each organ was measured by direct counting for 19 harvested organs of the mice. The medical internal radiation dose formula was applied to extrapolate data from mouse to human and to predict the absorbed radiation dose for various organs in the human body. The biodistribution of Ga-USPIO in Balb/c mice showed that 75% of the injected dose accumulated in the spleen and liver 15 min after injection. These nanoparticles remained in the liver for more than 7 days after injection, whereas their clearance was very fast from other organs. Extrapolating these data to the intravenous injection of Ga-USPIO in humans gave an estimated absorbed dose of 36.38 mSv/MBq for the total body, and the highest effective absorbed dose was seen in the liver (32.9 mSv/MBq). High uptakes of USPIO nanoparticles in the liver and spleen and their fast clearance from other tissues suggest that these nanoparticles labeled with a β-emitter radioisotope could be suitable as treatment agents for spleen and liver malignancies only if the organ tolerance dose is not exceeded.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0143-3636
1473-5628
DOI:10.1097/MNM.0b013e328362d2fb