Assessment of internal pressure effect, causing additional bending of the pipeline
Article justifies accounting for internal pressure effect in the pipeline, causing additional bending of the pipeline. According to some scientists, there is an erroneously used concept of the equivalent longitudinal axial force (ELAF) Sx, which depends on working pressure, temperature stresses, and...
Saved in:
Published in: | Zapiski Gornogo instituta (1999) Vol. 242; p. 160 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Saint-Petersburg Mining University
01-01-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Article justifies accounting for internal pressure effect in the pipeline, causing additional bending of the pipeline. According to some scientists, there is an erroneously used concept of the equivalent longitudinal axial force (ELAF) Sx, which depends on working pressure, temperature stresses, and joint deformations of pipelines with various types of soils. However, authors of the article use ELAF Sx concept at construction of mathematical model of stress-strain state (SSS) for complex section of the trunk pipeline, and also reveal it when analyzing the results of calculating the durability and stability of the pipeline. Analysis of SSS for calculated section of the pipeline was carried out for two statements of the problem for different values of operation parameters. In the first statement, effect of internal pressure causing bending of the pipeline is taken into account, and in the second it is neglected. It is shown that due to effect of ELAF Sx at p0 = 9.0 MPa, Dt = 29 °C extreme value of bend increases by 54 %, extreme values of bending stresses from span bending moment increase by 74 %, and extreme value of bending stresses from support bending moment double with regard to corresponding SSS characteristics of the pipeline. In case of neglecting the internal pressure effect causing additional bending of the pipeline (second statement of the problem), error in calculating the extreme value of bend is 35 %, extreme value of bending stresses from span bending moments is 44 %, and extreme value of bending stresses from support bending moments is 95 %. |
---|---|
ISSN: | 2411-3336 2541-9404 |
DOI: | 10.31897/pmi.2020.2.160 |