Molecular mechanisms of HER2-targeted therapy and strategies to overcome the drug resistance in colorectal cancer
HER2 amplification is one of the mechanisms that induce drug resistance to anti-EGFR therapy in colorectal cancer. In recent years, data from several randomized clinical trials show that anti-HER2 therapies improved the prognosis of patients with HER2-positive colorectal cancer. These results indica...
Saved in:
Published in: | Biomedicine & pharmacotherapy Vol. 179; p. 117363 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
France
Elsevier Masson SAS
01-10-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | HER2 amplification is one of the mechanisms that induce drug resistance to anti-EGFR therapy in colorectal cancer. In recent years, data from several randomized clinical trials show that anti-HER2 therapies improved the prognosis of patients with HER2-positive colorectal cancer. These results indicate that HER2 is a promising therapeutic target in advanced colorectal cancer. Despite the anti-HER2 therapies including monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates improving the outcomes, less than 30 % of the patients achieve objective response and eventually have drug resistance. It is necessary to explore the primary and secondary mechanisms for the resistance to anti-HER2 therapies, which will pave the way to overcome the drug resistance. Several studies have reported the potential mechanisms for the resistance to anti-HER2 therapies. In this review, we present a comprehensive overview of the recent advances in clinical research, mechanisms of treatment resistance, and strategies for reversing resistance in HER2-positive colorectal cancer patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0753-3322 1950-6007 1950-6007 |
DOI: | 10.1016/j.biopha.2024.117363 |