Smoothing cones over K3 surfaces
We prove that the affine cone over a general primitively polarised K3 surface of genus g is smoothable if and only if g ≤ 10 or g = 12. We also give several examples of singularities with special behaviour, such as surfaces whose affine cone is smoothable even though the projective cone is not. Nous...
Saved in:
Published in: | Épijournal de géométrie algébrique Vol. 2; no. Article no.15 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
EPIGA
21-12-2018
Association Epiga |
Series: | Volume 2 (2018) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the affine cone over a general primitively polarised K3 surface of genus g is smoothable if and only if g ≤ 10 or g = 12. We also give several examples of singularities with special behaviour, such as surfaces whose affine cone is smoothable even though the projective cone is not.
Nous montrons que le cône affine sur une surface K3 primitivement polarisée générale de genre g est lissable si et seulement si g≤ 10 ou g = 12. Nous exhibons également plusieurs exemples de singularités affichant des comportements spécifiques, tels que des surfaces dont le cône affine est lissable alors même que le cône projectif ne l'est pas. |
---|---|
ISSN: | 2491-6765 2491-6765 |
DOI: | 10.46298/epiga.2018.volume2.4055 |