Residual Mulching Film Detection in Seed Cotton Using Line Laser Imaging
Due to the widespread use of mulching film in cotton planting in China, residual mulching film mixed with machine-picked cotton poses a significant hazard to cotton processing. Detecting residual mulching film in seed cotton has become particularly challenging due to the film’s semi-transparent natu...
Saved in:
Published in: | Agronomy (Basel) Vol. 14; no. 7; p. 1481 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the widespread use of mulching film in cotton planting in China, residual mulching film mixed with machine-picked cotton poses a significant hazard to cotton processing. Detecting residual mulching film in seed cotton has become particularly challenging due to the film’s semi-transparent nature. This study constructed an imaging system combining an area array camera and a line scan camera. A detection scheme was proposed that utilized features from both image types. To simulate online detection, samples were placed on a conveyor belt moving at 0.2 m/s, with line lasers at a wavelength of 650 nm as light sources. For area array images, feature extraction was performed to establish a partial least squares discriminant analysis (PLS-DA) model. For line scan images, texture feature analysis was used to build a support vector machine (SVM) classification model. Subsequently, image features from both cameras were merged to construct an SVM model. Experimental results indicated that detection methods based on area array and line scan images had accuracies of 75% and 79%, respectively, while the feature fusion method achieved an accuracy of 83%. This study demonstrated that the proposed method could effectively improve the accuracy of residual mulching film detection in seed cotton, providing a basis for reducing residual mulching film content during processing. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy14071481 |