Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs

We consider robust semi-definite programs which depend polynomially or rationally on some uncertain parameter that is only known to be contained in a set with a polynomial matrix inequality description. On the basis of matrix sum-of-squares decompositions, we suggest a systematic procedure to constr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 107; no. 1-2; pp. 189 - 211
Main Authors: Scherer, C. W., Hol, C. W. J.
Format: Journal Article
Language:English
Published: Heidelberg Springer Nature B.V 01-06-2006
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider robust semi-definite programs which depend polynomially or rationally on some uncertain parameter that is only known to be contained in a set with a polynomial matrix inequality description. On the basis of matrix sum-of-squares decompositions, we suggest a systematic procedure to construct a family of linear matrix inequality relaxations for computing upper bounds on the optimal value of the corresponding robust counterpart. With a novel matrix-version of Putinar's sum-of-squares representation for positive polynomials on compact semi-algebraic sets, we prove asymptotic exactness of the relaxation family under a suitable constraint qualification. If the uncertainty region is a compact polytope, we provide a new duality proof for the validity of Putinar's constraint qualification with an a priori degree bound on the polynomial certificates. Finally, we point out the consequences of our results for constructing relaxations based on the so-called full-block S-procedure, which allows to apply recently developed tests in order to computationally verify the exactness of possibly small-sized relaxations. [PUBLICATION ABSTRACT]
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0684-2