Double Exponential Ratio Estimator of a Finite Population Variance under Extreme Values in Simple Random Sampling
This article presents an improved class of efficient estimators aimed at estimating the finite population variance of the study variable. These estimators are especially useful when we have information about the minimum/maximum values of the auxiliary variable within a framework of simple random sam...
Saved in:
Published in: | Mathematics (Basel) Vol. 12; no. 11; p. 1737 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents an improved class of efficient estimators aimed at estimating the finite population variance of the study variable. These estimators are especially useful when we have information about the minimum/maximum values of the auxiliary variable within a framework of simple random sampling. The characteristics of the proposed class of estimators, including bias and mean squared error (MSE) under simple random sampling are derived through a first-order approximation. To assess the performance and validate the theoretical outcomes, we conduct a simulation study. Results indicate that the proposed class of estimators has lower MSEs as compared to other existing estimators across all simulation scenarios. Three datasets are used in the application section to emphasize the effectiveness of the proposed class of estimators over conventional unbiased variance estimators, ratio and regression estimators, and other existing estimators. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12111737 |