Double Exponential Ratio Estimator of a Finite Population Variance under Extreme Values in Simple Random Sampling

This article presents an improved class of efficient estimators aimed at estimating the finite population variance of the study variable. These estimators are especially useful when we have information about the minimum/maximum values of the auxiliary variable within a framework of simple random sam...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 12; no. 11; p. 1737
Main Authors: Daraz, Umer, Wu, Jinbiao, Albalawi, Olayan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents an improved class of efficient estimators aimed at estimating the finite population variance of the study variable. These estimators are especially useful when we have information about the minimum/maximum values of the auxiliary variable within a framework of simple random sampling. The characteristics of the proposed class of estimators, including bias and mean squared error (MSE) under simple random sampling are derived through a first-order approximation. To assess the performance and validate the theoretical outcomes, we conduct a simulation study. Results indicate that the proposed class of estimators has lower MSEs as compared to other existing estimators across all simulation scenarios. Three datasets are used in the application section to emphasize the effectiveness of the proposed class of estimators over conventional unbiased variance estimators, ratio and regression estimators, and other existing estimators.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12111737