A Unified Framework of Clustering Approach in Vehicular Ad Hoc Networks
Effective clustering algorithms are indispensable in order to solve the scalability problem in vehicular ad hoc networks. Although current existing clustering algorithms show increased cluster stability under some certain traffic scenarios, it is still hard to address which clustering metric perform...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems Vol. 19; no. 5; pp. 1401 - 1414 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
IEEE
01-05-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Effective clustering algorithms are indispensable in order to solve the scalability problem in vehicular ad hoc networks. Although current existing clustering algorithms show increased cluster stability under some certain traffic scenarios, it is still hard to address which clustering metric performs the best. In this paper, we propose a unified framework of clustering approach (UFC), composed of three important parts: 1) neighbor sampling; 2) backoff-based cluster head selection; and 3) backup cluster head based cluster maintenance. Three mobility-based clustering metrics, including vehicle relative position, relative velocity, and link lifetime, are considered in our approach under different traffic scenarios. Furthermore, a detailed analysis of UFC with parameters optimization is presented. Extensive comparison results among UFC, lowest-ID, and VMaSC algorithms demonstrate that our clustering approach performs high cluster stability, especially under high dynamic traffic scenarios. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2017.2727226 |